54 research outputs found

    Solubility enhancement of aggregation-prone heterologous proteins by fusion expression using stress-responsive Escherichia coli protein, RpoS

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The most efficient method for enhancing solubility of recombinant proteins appears to use the fusion expression partners. Although commercial fusion partners including maltose binding protein and glutathione-<it>S</it>-transferase have shown good performance in enhancing the solubility, they cannot be used for the proprietory production of commercially value-added proteins and likely cannot serve as universal helpers to solve all protein solubility and folding issues. Thus, novel fusion partners will continue to be developed through systematic investigations including proteome mining presented in this study.</p> <p>Results</p> <p>We analyzed the <it>Escherichia coli </it>proteome response to the exogenous stress of guanidine hydrochloride using 2-dimensional gel electrophoresis and found that RpoS (RNA polymerase sigma factor) was significantly stress responsive. While under the stress condition the total number of soluble proteins decreased by about 7 %, but a 6-fold increase in the level of RpoS was observed, indicating that RpoS is a stress-induced protein. As an N-terminus fusion expression partner, RpoS increased significantly the solubility of many aggregation-prone heterologous proteins in <it>E. coli </it>cytoplasm, indicating that RpoS is a very effective solubility enhancer for the synthesis of many recombinant proteins. RpoS was also well suited for the production of a biologically active fusion mutant of <it>Pseudomonas putida </it>cutinase.</p> <p>Conclusion</p> <p>RpoS is highly effective as a strong solubility enhancer for aggregation-prone heterologous proteins when it is used as a fusion expression partner in an <it>E. coli </it>expression system. The results of these findings may, therefore, be useful in the production of other biologically active industrial enzymes, as successfully demonstrated by cutinase.</p

    Flexible Programming of Cell-Free Protein Synthesis Using Magnetic Bead-Immobilized Plasmids

    Get PDF
    The use of magnetic bead-immobilized DNA as movable template for cell-free protein synthesis has been investigated. Magnetic microbeads containing chemically conjugated plasmids were used to direct cell-free protein synthesis, so that protein generation could be readily programmed, reset and reprogrammed. Protein synthesis by using this approach could be ON/OFF-controlled through repeated addition and removal of the microbead-conjugated DNA and employed in sequential expression of different genes in a same reaction mixture. Since the incubation periods of individual template plasmids are freely controllable, relative expression levels of multiple proteins can be tuned to desired levels. We expect that the presented results will find wide application to the flexible design and execution of synthetic pathways in cell-free chassis

    538 A.D. and the Transition from Pagan Roman Empire to Holy Roman Empire: Justinian’s Metamorphosis from Chief of Staffs to Theologian

    Get PDF
    The year 538 A.D. became the turning point in the history of the Roman Empire since so many aspects on political, administrative and economical levels were already switched off that when Justinian declared himself to be a theologian from this year and no longer a soldier, he crossed the barrier of his mandate between what is purely civil obligation and what is religious obligation, similarly to Constantine before, and entered in competition with the papal function and this role is evidence of Justinian’s ongoing caesaro-papism. The quest for unification of the empire by unification of the church, the fever for church-building projects with his wife Theodora, the persecution of enemies of the church and heretics, his disdain with the Sabbath although his second name was Sabbatini, his support for suppressing any eschatological fever in line with the church fathers and Oecumenius and yet trying to build the ‘Kingdom of God’ on earth, all this indicate the problem 538 was for the Roman Empire and the Catholic Church. Archaeological and historical original sources of Justinian and contemporaries of popes, biographer of Justinian and a commentator on Revelation (Oecumenius) are very revealing of these times and the shift or transition of what belonged to the Roman Empire handed over since 538 A.D. to the church and the papal function. The Code of Justinian was a persecuting instrument. Justinian upheld the supremacy of the papacy. He permitted through the Council of Orleans actions to be done on Sunday that Constantine prohibited like travel and preparation of food and cleaning the house. In Novellae CXLIV Justinian instituted a Seventh-day Sabbath persecution. He changed the times and laws ad hoc as his Novellae XLVI and coins of 538 A.D. (XII year) indicate. Private gatherings were persecuted. He had church-manual laws. Justinian studied Systematic Theology on the nature of Christ and wrote homiletical rules for preachers. He gave textcritical advice to Jews and condemned their doctrinal deviations. This theological hobby of the ruler of the once mighty Roman Empire was to be taken over by a more theological competent power that would eventually lead to papal-caesarism until the unsettling of this new aggrandizing paradigm in 1798 by Napoleon. The prophetic embedding of the 1260 days as “years” prophecies in both Daniel 7 and Revelation 12 definitely started in 538 A.D. contrary to W. Spicer’s (1918) suggestion of 533 or 538 as two alternative dates or any other dates suggested by other scholars in the history of interpretation in historicism. It is also not just a case of history of interpretation hermeneutics but data solidly supported by archaeology, iconography and original historical sources that coincides with the parameters provided by exegesis of the rest of the Books of Daniel and Revelation added with the exegesis of the detail of the passages under consideration. A necessary ingredient for the historical researcher remains to be the faith that God can predict the future and He did and that the data as well as the prophecies of the Biblical Text are evidence of that

    Mineral bone disorder in children with chronic kidney disease: Data from the KNOW-Ped CKD (Korean cohort study for outcome in patients with pediatric chronic kidney disease) study

    Get PDF
    BackgroundChildren with chronic kidney disease (CKD) are at high risk of mineral bone disorder (MBD), which leads to fractures, growth retardation, and cardiovascular disease. We aimed to comprehensively understand the relationship between renal function and factors related to MBD and evaluate the prevalence and distribution characteristics of MBD, specifically among Korean patients from the KNOW-PedCKD cohort.MethodsFrom the baseline data of the KNOW-PedCKD cohort, we examined the prevalence and distribution of MBD in 431 Korean pediatric CKD patients, including the level of corrected total calcium, serum phosphate, serum alkaline phosphatase, serum intact parathyroid hormone (iPTH), fibroblast growth factor 23 (FGF-23), serum vitamin D, fractional excretion of phosphate (FEP), and bone densitometry Z-scores.ResultsThe median serum calcium level remained relatively normal regardless of the CKD stage. The levels of 1,25-dihydroxy vitamin D, urine calcium-to-creatinine ratio, and bone densitometry Z-score significantly decreased with advancing CKD stage, while those of serum phosphate, FGF-23, and FEP significantly increased with CKD stage. The prevalence of hyperphosphatemia (17.4%, 23.7%, and 41.2% from CKD stages 3b, 4, and 5, respectively) and hyperparathyroidism (37.3%, 57.4%, 55.3%, and 52.9% from CKD stages 3a, 3b, 4, and 5, respectively) significantly increased with the CKD stage. Prescriptions of medications, such as calcium supplements (39.1%, 42.1%, 82.4%), phosphate binders (39.1%, 43.4%, 82.4%), and active vitamin D (21.7%, 44.7%, and 64.7%) significantly increased with CKD stage 3b, 4, and 5, respectively.ConclusionsThe results demonstrated the prevalence and relationship of abnormal mineral metabolism and bone growth according to CKD stage in Korean pediatric CKD patients for the first time

    Bacterial Degradation of Aromatic Compounds

    Get PDF
    Aromatic compounds are among the most prevalent and persistent pollutants in the environment. Petroleum-contaminated soil and sediment commonly contain a mixture of polycyclic aromatic hydrocarbons (PAHs) and heterocyclic aromatics. Aromatics derived from industrial activities often have functional groups such as alkyls, halogens and nitro groups. Biodegradation is a major mechanism of removal of organic pollutants from a contaminated site. This review focuses on bacterial degradation pathways of selected aromatic compounds. Catabolic pathways of naphthalene, fluorene, phenanthrene, fluoranthene, pyrene, and benzo[a]pyrene are described in detail. Bacterial catabolism of the heterocycles dibenzofuran, carbazole, dibenzothiophene, and dibenzodioxin is discussed. Bacterial catabolism of alkylated PAHs is summarized, followed by a brief discussion of proteomics and metabolomics as powerful tools for elucidation of biodegradation mechanisms

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference

    A simple one-step assay platform based on fluorescence quenching of macroporous silicon

    No full text
    We synthesized 3D macroporous silicon through a simple electrochemical dissolution process and systematically estimated its protein adsorption and effect on fluorescence emission. Compared with conventional 2D polystyrene plate, the macroporous silicon showed a superior protein adsorption capacity and significant fluorescence quenching effect. We developed a 3D macroporous silicon-based adenosine assay system through the following fabrication process: streptavidin molecules that have been immobilized on the surface of macroporous silicon are attached with biotin-linked and adenosine-specific DNA aptamer, followed by hybridization between the attached aptamer and fluorescent chemical (carboxytetramethylrhodamine/CTMR) that is conjugated with a short complementary DNA sequence. In the absence of adenosine, the aptamer-CTMR complexes remain closely attached to the surface of porous silicon, hence fluorescence being significantly quenched. Upon binding to adenosine, the DNA aptamer is subject to structure switching that leads to dissociation of CTMR from DNA aptamer, and consequently the CTMR fluorescence is restored, indicating a simple one-step assay of adenosine. Compared to the conventional 2D PS and ZnO nanorods-based assays, adenosine at much lower (sub-micromolar) concentration was successfully detected through the 3D macroporous silicon-based assay. The three-dimensionally and densely immobilized aptamer probes and effective fluorescence quenching on the surface of macroporous silicon enables adenosine to be detected at lower levels. Although the adenosine detection is reported here as a proof-of-concept, the developed macroporous silicon-based simple one-step assay platform can be applied in general to fluorescence quenching -based detection of many other biomolecules. (C) 2012 Elsevier B.V. All rights reserved

    Graf soft system stabilizatio in unstable lumbar spinal disorders

    No full text
    corecore